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the particle-particle interactions [1–5, 
10, 11]. Other researchers treat the 
interactions phenomenologically, using 
a rather simplified statistical model 
[9]. Some alternative versions of the 
theory require an extensive amount 
of numerical work to obtain results 
for realistic systems [7, 8]. The other 
class of theories is only concerned with 
particles obeying classical statistics [12, 
13]. Thus a problem of formulating a 
self-consistent statistical theory of finite 
systems, free of the just mentioned 
flaws, remains open.

The purpose of this report is to outline 
the highlights of such a theory. We 
follow the path integral approach to the 
generation of the statistical mean-field 
theory of Kerman and Levit, previously 
formulated for very large nuclear 
systems whose statistical behavior 
is specified by the grand canonical 
ensemble [14, 15]. We generalize this 
method to treat finite-size systems 
described by the canonical ensemble. 
We first develop the simplest possible 
variant of the mean-field theory that 
does not take into account the exchange 
effects, and we provide an exact closed 
form expression for the occupation 
number distribution of particles in 
finite quantum systems within the 
framework of the independent particle 
approximation. The derived occupation 
distribution function has simple 
analytical expressions in the important 
limiting cases of large and small 
numbers of particles in the system. The 
first case is relevant for trapped Bose 
and Fermi gases as well as nanoscale 
clusters, whereas the second one is of 
interest for low-Z atomic or plasma 
systems, having ions with a few bound 
electrons. We also show how our results 
can be straightforwardly generalized to 
include the exchange effects using the 
approach of Ref. [15]. Not only does our 
theory enable us to derive the canonical 
occupation number distribution in a 
self-consistent manner, but it treats Bose 
and Fermi systems within the same 
general framework as well.
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Recently, there has been a 
growing interest in statistical 
properties of the mesoscopic 
quantum systems, containing 

a large but finite number of interacting 
particles. There exist examples galore of 
such finite many-body systems in nature 
as well as in laboratory experiments, 
including ultracold Bose and Fermi 
gases confined in atomic traps, 
multinucleon nuclei and multielectron 
neutral atoms, nanoscale atomic 
clusters, and multielectron ions in hot 
dense plasmas. The number of coupled 
particles in such mesoscopic systems 
can vary from a few, as is the case with 
the bound electrons in low-Z atoms or 
ions, to hundreds of thousands for the 
case of trapped neutral alkali atoms. 
The range of relevant thermodynamic 
conditions is also very broad: from 
ultralow, cryogenic temperatures and 
low densities in the case of trapped 
Bose and Fermi gases to very high 
temperatures and densities in the case of 
some plasmas. Hence the development 
of a unified statistical theory of such 
systems, capable of taking into account 
finite size effects, is quite timely, and it 
can have a broad spectrum of potential 
applications. Since the number of 
particles is finite and fixed, we have 
to work with the canonical ensemble, 
which usually presents formidable 
difficulties.

Some progress along these lines has 
however been made to date [1–11]. 
Unfortunately, all these approaches 
suffer from significant drawbacks. In 
particular, some authors only consider 
either the systems with large numbers 
of particles [1–6, 9], or those at low 
temperatures [1–6], or they neglect 
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